3 research outputs found

    Biomechanical aspects of reinforced implant over-dentures: a systematic review

    Get PDF
    AbstractPurposeThe purpose of this systematic review was to investigate the effect of reinforcement on the mechanical behaviour of implant overdenture (IOD) bases and its cumulative biological effect on the underlying supporting structures (implants and the residual ridge).Material and methodsThe required documents were collected electronically from PubMed and Web of Science databases targeting papers published in English that focused on denture base reinforcement for IOD prostheses in order to recognize the principal outcomes of reinforcement on the mechanical and biological properties of overdentures. Such biological outcomes as: strains on implants, peri-implant bone loss, residual ridge resorption, and strain on the residual alveolar ridge.ResultsA total of 269 citations were identified. After excluding any repeated articles between databases and the application of exclusion and inclusion criteria, only 13 publications fulfilled the inclusion criteria. Three publications investigated the mechanical properties of fibre and/or metal-reinforced implant overdentures while another 3 articles investigated the effect of metal reinforcement on stress distribution and strains transmitted to the underlying implants. In addition, 3 in vitro studies investigated the effect of metal reinforcement on overdenture base strain and stresses. Stress distribution to the residual ridge and strain characteristics of the underlying tissues were investigated by 2 in vitro studies. Five clinical studies performed to assist the clinical and prosthetic maintenance of metal-reinforced IOD were included. Data concerning denture base fracture, relining, peri-implant bone loss, probing depth, and implant survival rates during the functional period were extracted and considered in order to evaluate the mechanical properties of the denture base, residual ridge resorption and implant preservation rates, respectively.ConclusionThe use of a denture base reinforcement can reduce the fracture incidence in IOD bases by enhancing their flexural properties and reducing the overdenture base deformation. Strains on the underlying supporting structures of overdenture prostheses including dental implants and the residual ridge can be decreased and evenly distributed using a metal reinforcement.</div

    Effect of Implant Location on Palateless Complete Overdenture Retention: an In Vitro Study

    No full text
    Objectives: The purpose of this in vitro study was to evaluate effect of implant location on initial retention values of palateless complete overdentures retained by four o-rings at different inter-implant distances. Material and Methods: Two standard acrylic models representing completely edentulous maxillary arches were used. Four single piece ball type implants were placed in each model. Models were divided into two groups according to the distance between anterior and posterior implants. Two canine implants with 32 mm inter-implant distance were placed in both models. In one model (G1), two posterior implants were placed in second premolar region away from canine implants by 14 mm on both sides, while in the other model (G2), the two posterior implants were placed in first molar region away from canine implants by 22 mm on both sides. Eighteen palateless complete overdentures were constructed for each model. Overdentures were retained by four o-rings. Initial axial (central), and para-axial (anterior, posterior, and lateral) retention values of overdentures were estimated and compared using a universal testing machine. Results: Independent t-test revealed that implant location has a significant role in palateless complete overdenture retention with a level of significance set at P < 0.05. Conclusions: For in vitro simulated palateless implant overdentures retained by four o-rings, increasing the inter-implant distance between anterior and posterior implants is favourable for a more retentive prosthesis
    corecore